

Journal of Alloys and Compounds 317–318 (2001) 315–319

Several of
ALLOYS
AND COMPOUNDS
————————————————————

www.elsevier.com/locate/jallcom

Crystal growth by molten metal flux method and properties of manganese silicides

Shigeru Okada^{a, *}, Toetsu Shishido^b, Yoshio Ishizawa^c, Makoto Ogawa^d, Kunio Kudou^e, Tsuguo Fukuda^b, Torsten Lundström^f

a *Faculty of Engineering*, *Kokushikan University*, ⁴-28-¹ *Setagaya*, *Setagaya*, *Tokyo* ¹⁵⁴-8515, *Japan*

b *Institute for Materials Research*, *Tohoku University*, ²-1-¹ *Katahira*, *Aoba*, *Sendai* ⁹⁸⁰-0812, *Japan*

c *Department of Materials Science*, *Iwaki Meisei University*, ⁵-5-¹ *Iino*, *Chuohdai*, *Iwaki* ⁹⁷⁰-8551, *Japan*

d *Faculty of Engineering*, *Tokyo Institute of Polytechnics*, ¹⁵⁸³ *Iiyama*, *Atsugi* ²⁴³-0297, *Japan*

e *Faculty of Engineering*, *Kanagawa University*, ³-27-1, *Rokkakubashi*, *Kanagawa*, *Yokohama* ²²¹-8686, *Japan*

f *˚ The Angstrom Laboratory ¨* , *Uppsala University*, *Box* 538, *SE*-⁷⁵¹ ²¹ *Uppsala*, *Sweden*

Abstract

Crystals of binary manganese silicides were grown from high temperature copper, tin and lead metal fluxes by slow cooling method under an argon atmosphere. The growth conditions for obtaining single crystals of relatively large size were established. For tin and lead fluxes, the three silicides Mn_5Si_3 , MnSi, and $Mn_{27}Si_{47}$ crystals were prepa formed, and the crystals were somewhat smaller. As-grown $Mn_{\rm s}Si_{\rm a}$, MnSi, and $Mn_{\rm b}Si_{\rm a}$ crystals were used for chemical analyses and measurements of density and unit cell parameters. The chemical analyses of the crystals are discussed. Vickers microhardness and electrical resistivity were determined on MnSi and Mn₅Si₃ crystals, and oxidation at high temperature in air was studied for Mn₅Si₃, MnSi, and $\text{Mn}_{27}\text{Si}_{47}$ crystals. \circ 2001 Elsevier Science B.V. All rights reserved.

Keywords: Mn₅Si₃; MnSi; Mn₂₇Si₄₇; Metal flux; Crystal morphology; Electrical resistivity; Vickers microhardness; Thermal properties

thermal stability, and several unique chemical and physical preparing single crystals of transition metal silicides, in properties [1]. The disilicides of groups 4–7 transition terms of synthesis technology at lower temperature, is metals and those of the iron subgroup are of greatest provided by the crystal synthesis from solution in metallic interest. However, the data available on these properties melts [2,6–9]. are in most cases obtained from measurements on poly- In the present work, we report the growth conditions for crystalline materials or sintered samples and they are often Mn_5Si_3 , MnSi, and $MnSi_{2-x}$ ($Mn_{27}Si_{47}$) crystals of relacontradictory. Therefore it is desirable to grow single tively large size by slowly cooling the copper, tin, and lead crystals whose study could give more reliable information metal fluxes. The crystal size, the crystal morphology, on the properties [2]. MnSi_{2-x} crystals have attracted densities and crystallographic data of as-grown Mn₅Si₃, considerable interest because of their remarkable properties MnSi, and Mn₂₇Si₄₇ crystals were determ and potential for applications as a high temperature resistivity and Vickers microhardness were examined, as thermoelectric material [3]. In the manganese–silicon well as oxidation resistivity at high temperature in air. system the intermediate phases $Mn₆Si$ (rhombohedral), $Mn_{44.10}Si_{8.90}$ (rhombohedral), $Mn_{0.815}Si_{0.185}$ (orthorhombic), Mn₃Si (cubic), Mn₅Si₂ (tetragonal), Mn₅Si₃ (hexa- **2. Experimental** gonal), MnSi (cubic), MnSi_{2-x} $(0.250 \le x \le 0.273$: Mn₁₁Si₁₉ (tetragonal), Mn₂₆Si₄₅ (tetragonal), Mn₁₅Si₂₆ 2.1. *Sample preparations*

MnSi, and $Mn_{27}Si_{47}$ crystals were determined. Electrical

*Corresponding author. The reagents used to prepare the samples were man-

^{1.} Introduction (tetragonal), $Mn_{27}Si_{47}$ (tetragonal), and $Mn_{4}Si_{7}$ (tetragonal)) have been reported [3,4]. The Mn–Si phase diagram is The binary silicides of the transition metals have a high that given by Massalski [5]. The simplest method of

ganese metal powder (purity, 99.9%), silicon powder
(purity, 99.9%), conner chine (99.99%), tin chine (purity Preparation conditions of manganese silicide crystals from molten copper (purity, 99.99%), copper chips (99.99%), tin chips (purity, $\frac{Pref}{P}$
99.9%), and lead chips (purity, 99.9%). Mn and Si elements were weighed in atomic ratios of range 1:0.5– 1:2.0. Metal flux was added to these mixtures at a weight ratio of 15:1. The mixture of these metal elements was placed in an Al_2O_3 crucible and heated under an Ar gas. The temperature of the furnace was raised at a rate of 300° C h⁻¹ up to 1200° C and kept for 10 h, and then cooled down at a rate of 50° C h⁻¹ to 800° C. Then the furnace was rapidly cooled down to room temperature. The crystals were separated by dissolving the metal fluxes in dilute **3. Results and discussion** hydrochloric acid or nitric acid.

surfaces of the crystals were analysed in a scanning were formed. MnSi crystals were always obtained as a electron microscope (SEM) (Jeol, JED-2140). The chemi-
and Mn_sSi_3 crystals obtained were small and irregularly-
a cal composition of crystals was determined by an electron and Mn_5N_3 crystals obtained problem integrals and Mn_5N_3 crystals obtained shaped polyhedral crystals. probe microanalyzer (EPMA) (Jeol, JSM-35C) equipped with an energy dispersive X-ray detector (EDX) (Horiba,
EMAX-2770). Possible incorporation of Cu, Sn and Pb 3.2 . Compounds of the Mn-Si system obtained from Sn atoms into the crystals grown, which might come from the $flux$ metal solutions, were checked with EDX. The crystalline
phases and the unit cell parameters were determined using
a powder X-ray diffractometer (XRD) (Rigaku, RINT-
listed in Table 2. As seen from Table 2, Mn_5Si_3 , MnSi,

using a Vickers diamond indenter [10] at room tempera- (Fig. 1A). MnSi single crystals were generally obtained as ture. A load of 0.98 N was applied for 15 s at about five prisms extending in $\langle 100 \rangle$ direction (Fig. 1B), while points on each crystal, and the values obtained were $Mn_{27}Si_{47}$ single crystals had a nearly spherical polyhedral averaged. The electrical resistivity of as-grown MnSi and

MnSi and shape (Fig. 1C). The largest Mn₅Si₃ crystals had maxi-

Mn₅Si₃ crystals was measured by a direct-current four-

mum dimensions of about $0.1 \times 0.$ probe technique at room temperature in air. The crystals of MnSi and Mn₂₇Si₄₇ crystals had maximum dimensions of Mn₂₇Si₄₇ were smaller, and not suitable for determination about $0.9 \times 1.0 \times 9.2$ mm³ and $0.25 \times$ of the microhardness and the electrical resistivity. The electrical resistivity, Vickers microhard-

Thermogravimetric (TG) analysis and differential thermal analysis (DTA) [11] were performed up to 1200° C to study the oxidation resistivity of Mn_5Si_3 , MnSi, and $Mn_{27}Si_{47}$ crystals in air. Specimens of about 20 mg were heated at a rate of 10° C min⁻¹. The products obtained by oxidation were analysed by XRD.

Run no.	Starting composition Mn:Si (atomic ratio)	Phases identified		
	1:2.0	MnSi, Mn ₅ Si ₃		
2	1:1.74	MnSi, Mn $_{5}Si_{3}$		
3	1:1.5	MnSi, Mn $_{5}Si_{3}$		
4	1:1.0	MnSi, Mn ₅ Si ₃		
5	1:0.5	Mn_5Si_3 , MnSi		

3.1. *Compounds of the Mn*–*Si system obtained from Cu flux*

2.2. *^X*-*ray diffraction and chemical analyses* The atomic ratios Si/Mn in the starting materials were Relatively large crystals of manganese silicides were
selected under a stereomicroscope for crystal size and
crystalline phases obtained is presented in Table 1. As seen
crystal morphology studies and for chemical analysi

2500VHF) with monochromatic CuK_{α} radiation (wave-
length λ =0.154174 nm) and semi-conductor grade silicon
(purity, 99.9999%) as internal calibration standard.
Three manganese silicides
of the starting materials g Mn_5Si_3 , MnSi and $Mn_{27}Si_{47}$ were obtained as single 2.3. *Vickers microhardness and electrical resistivity* crystals. The crystals of all three phases had a grayish color and metallic lustre. Prismatic crystals of Mn_5Si_3 As-grown MnSi and Mn₅Si₃ crystals were measured were generally obtained extending in the (0001) direction

'able	
-------	--

2.4. *Oxidation resistivity* **Preparation conditions of manganese silicide crystals from molten tin flux**

Fig. 1. Microphotograph and SEM photographs of Mn_5Si_3 (A) (run no. 10), MnSi (B) (run no. 9), and $Mn_{27}Si_{47}$ (C) (run no. 7) crystals grown by the tin flux method.

ness and TG-DTA measurements were performed on the largest crystals.

3.3. *Compounds of the Mn*–*Si system obtained from Pb flux*

The X-ray evidence for the crystalline phases obtained is presented in Table 3. As seen from Table 3, four com-
pounds Mn_zSi_3 , $Mn_{\rm s}Si_3$, $Mn_{\rm s}Si_{\rm 7}$ and Si phases were lead flux method. pounds Mn_5Si_3 , MnSi, $Mn_{27}Si_{47}$ and Si phases were

Table 3

Preparation conditions of manganese silicide crystals from molten lead flux

Run no.	Starting composition Mn:Si (atomic ratio)	Phases identified		
11	1:2.0	$Si, Mn_{27}Si_{47}$		
12	1:1.74	$Mn_{27}Si_{47}$, MnSi		
13	1:1.5	$Mn_{27}Si_{47}$, MnSi		
14	1:1.0	MnSi, Mn ₅ Si ₃		
15	1:0.5	Mn_sSi_3 , MnSi		

formed. It is shown that the more silicon-rich phases form for the larger Si/Mn values in the starting materials in a similar manner to that observed in Sn flux. $Mn_{27}Si_{47}$ crystals were obtained as a phase mixture together with MnSi or Si crystals, and MnSi crystals were always obtained as a phase mixture together with Mn_5Si_3 crystals. Mn_5Si_3 and MnSi crystals were smaller, and generally obtained as irregularly shaped crystals. $Mn_{27}Si_{47}$ were obtained as nearly spherical polyhedral single crystals (Fig. 2) and the largest crystals had maximum dimensions of about $50 \mu m$.

3.4. *Unit cell parameters*, *densities and compositions of manganese silicides*

The basic crystal data, densities and chemical compositions of manganese silicides are listed in Tables 4 and 5. The unit cell parameters of Mn_5Si_3 , MnSi and $Mn_{27}Si_{47}$ crystals obtained are in good agreement with previously published data [3]: for Mn_5Si_3 $a=0.6910$ nm, $c=0.4814$ nm; for MnSi $a=0.4557$ nm; for Mn₂₇Si₄₇ $a=0.5530$ nm, $c=11.794$ nm. The EPMA or EDX results seem to indicate that the manganese silicides have appreciable homogeneity ranges. The expected variations of the unit cell parameters with composition were not observed, however, and thus conclusive evidence for homogeneity ranges is not re-

Table 4 The unit cell parameters and densities of manganese silicide crystals

Metal flux	Cu	Cu	Sn	Sn	Sn	Pb	Pb	Pb
Run no.				9	10	12	14	15
Formula unit	MnSi	Mn_sSi_2	$Mn_{22}Si_{42}$	MnSi	$Mn_{\epsilon}Si_{2}$	$Mn_{22}Si_{42}$	MnSi	$Mn_{\epsilon}Si_{2}$
Crystal system	Cubic	Hexagonal	Tetragonal	Cubic	Hexagonal	Tetragonal	Cubic	Hexagonal
a (nm)	0.4559(1)	0.6911(2)	0.5530(1)	0.4558(1)	0.6909(2)	0.5529(1)	0.4559(1)	0.6910(1)
$b \text{ (nm)}$								
c (nm)		0.4814(1)	11.786(2)		0.4815(1)	11.784(2)		0.4815(1)
$V(\times 10^{-3} \text{ nm}^3)$	94.76(1)	199.12(1)	3604.26(2)	94.69(1)	199.04(2)	3602.35(2)	94.76(1)	199.10(1)
Space group	P2,3	$P6$,/mcm	$P\bar{4}n2$	P2,3	$P6$ ₂ /mcm	$P\bar{4}n2$	P2,3	$P6$ ₂ /mcm
Ζ	4		4				4	
$d_{\rm m}$ (g cm ⁻³) ^a			5.17(2)	5.80(1)	5.95(2)			
d_{x} (g cm ⁻³)	5.819(1)	5.987(1)	5.166(1)	5.818(1)	5.989(1)	5.169(1)	5.820(1)	5.988(1)

^a Pycnometer method with distilled water at 20°C.

Table 5 The results of the chemical analysis of manganese silicide crystals

Metal flux	Сu	Сu	Sn	Sn	Sn	Pb	Pb	Pb
Run no.					10	12	14	
Formula unit	MnSi	$Mn_{s}Si_{2}$	$Mn_{27}Si_{47}$	MnSi	$Mn_{\epsilon}Si_{2}$	$Mn_{27}Si_{47}$	MnSi	$Mn_{\epsilon}Si_{\epsilon}$
Mn $(wt.\%)^a$	$\hspace{0.05cm}$	$\qquad \qquad \ \ \, -$	53.8	65.8	78.1	53.5	$\overline{}$	$\overline{}$
Si (wt.%) ^a	$\hspace{0.05cm}$	-	46.2	34.2	21.9	46.5	$\overline{}$	$\overline{}$
Chemical composition	$\qquad \qquad -$	$\qquad \qquad -$	$Mn_{27.98}Si_{47}$	$Mn_{0.98}Si$	$Mn_{5.45}Si_3$	$Mn_{27.64}Si_{47}$	$\overline{}$	$\qquad \qquad -$

Table 7

a EPMA or EDX results.

ported. Although the impurity content of Mn_5Si_3 , MnSi Electrical resistivity of Mn_5Si_3 and MnSi crystals and $Mn_{27}Si_{47}$ crystals was not analysed chemically, the EPMA and EDX established the occurrence of traces of calcium, magnesium, iron and aluminium, while copper, tin and lead as metal flux were found to lie below the detection limit $(<0.05\%)$. Consequently, the solid solubility of copper, tin or lead in manganese silicides is extremely low.

Vickers microhardness for manganese silicides are distributed over 8–11 GPa. The microhardness values of Mn₅Si₃ 3.6. *TG-DTA measurement* are somewhat lower than the value of MnSi. The microhardness values of MnSi₃ 3

3.5. *Hardness and electrical resistivity* The values of Mn₅Si₃ and MnSi crystals are an order of The Vickers microhardness of as-grown Mn_5Si_3 and

MnSi crystals was measured on the (10 $\overline{1}0$) and (100)

planes, respectively. As listed in Table 6, the value of the

planes and $\overline{1}$ from a polycrystallin

are somewhat lower than the value of MnSi. The mi-
crohardness value of Mn_5Si_3 and MnSi crystals were not
reported in the literature earlier.
The electrical resistivity of as-grown Mn_5Si_3 and MnSi
crystals in air.

Fig. 3. TG-DTA curves of Mn_5Si_3 , MnSi, and $Mn_{27}Si_{47}$ crystals heated ty for their help in the experiments. in air.

References to identify any oxidation products by XRD. MnSi (cubic system) shows high oxidation resistivity, while $Mn_{27}Si_{47}$ (tetragonal system) and Mn_5Si_3 (hexagonal system) show [1] B. Aronsson, T. Lundström, S. Rundqvist, in: Borides, Silicides and Dow oxidation resistivity. The resistivity towards oxidation seems to be related to crystal stability. However, a large exothermic peak of the DTA [3] G.V. Samsonov, I.M. Vinitskii, in: Handbook of Refractory Comcurve was found at about 1175° C for $\text{Mn}_5 \text{Si}_3$, and three pounds, IFI/Plenum, New York, 1980, p. 136.
5 small endothermic peaks of the DTA curve were found at [4] P.F. Wieser, W.D. Forgeng, Trans. AIME 230 (1964 small endothermic peaks of the DTA curve were found at a shout 1023°C, 1125°C and 1176°C for $Mn_{27}Si_{47}$. The following oxidation products were identified for $Mn_{5}Si_{3}$ as following oxidation products were identified well as $Mn_{27}Si_{47}$, namely crystalline $MnSiO_3$ (triclinic), [6] S. Okada, T. Atoda, Nippon Kagaku Kaishi 5 (1983) 746, in MnO (cubic), γ -Mn₂O₃ (tetragonal) and SiO₂ (tetragonal). Japanese.

For Mn Si this leads to the following total formula: [7] S. Okada, K. Kudou, M. Miyamoto, Y. Hikichi, Nippon Kagaku For Mn_5Si_3 this leads to the following total formula: $\begin{array}{c} [7] \text{S. Okada, K. Kudou, M. Miyamoto Kaishi 12 (1991) 1612, in Japanese.} \end{array}$

The observed weight gain of about 30% at 1200°C (Fig. $[9]$ S. Okada, K. Okita, K. Hamano, T. Lundström, High Temp. Mater.
3) corresponds to a transformation of \sim 50% by volume of $[10]$ S. Okada, T. Atoda, I. Higashi, the Mn_5Si_3 crystals. This reaction is probably exothermic.
The occurrence of three small endothermic peaks in the [11] S. Okada, K. Iizumi, K. Kudaka, T. Shishido, T. Fukuda, in: 9th The occurrence of three small endothermic peaks in the [11] S. Okada, K. Iizumi, K. Kudaka, T. Shishido, T. Fukuda, in: 9th
Cimtec-World Forum on New Materials Symposium VII — Innova-DTA curve of $\text{Mn}_{27}\text{Si}_{47}$ is probably associated with partial
melting of the $\text{Mn}_{27}\text{Si}_{47}$ phase. However, the phase rela-
melting of the Mn_{32-x} phase. However, the phase rela-
635. tionships $(Mn_{11}Si_{19}$, $Mn_{15}Si_{26}$, $Mn_{26}Si_{45}$, and $Mn_{27}Si_{47}$ [12] T.B. Massalski (Ed.), Binary Phase Diagrams, American Society of and the corresponding part of the phase diagram [12] are Metals, Metals Park, OH, USA, 1986, p. 1588. not well known and conclusions are uncertain.

4. Conclusion

In this investigation crystals of manganese silicides Mn_5Si_3 , MnSi, and $Mn_{27}Si_{47}$ were prepared from a high temperature flux method using copper, tin or lead as fluxes. From copper flux, only the two silicides MnSi and Mn_SSi_3 were formed. Crystals of other phases were smaller, and not sufficiently large for property measurements. From tin and lead fluxes, the three silicides Mn_5Si_3 , MnSi, and $Mn_{27}Si_{47}$ crystals were prepared. The largest crystals were those of Mn_5Si_3 and MnSi as obtained from tin flux. These crystals were of mm size. The oxidation sets in at relatively high temperature for MnSi, namely at 1060° C. As-grown manganese silicide crystals were used for measurements of Vickers microhardness and electrical resistivity. In this study, the electrical resistance of Mn_5Si_3 and MnSi crystals were found to be an order of magnitude higher than earlier reported, based on sintered bodies [3]. The microhardness values of Mn_5Si_3 are somewhat lower than the value of MnSi. The microhardness values of the compounds seem to be related to its crystal structure.

Acknowledgements

The authors would like to thank Dr. K. Iizumi, Miss T. Tsuchiya and Mr. F. Matsukawa of Tokyo Institute of Polytechnics, and Dr. L.-E. Tergenius of Uppsala Universi-

-
-
-
-
-
-
-
- $Mn_5Si_3 + 6O_2 \rightarrow MnSiO_3 + 2MnO + \gamma Mn_2O_3 + 2SiO_2$ [8] S. Okada, K. Kudou, T. Lundström, in: Proceedings of the Sixth International Conference on Ferrite (ICF 6), 1992, p. 389.
	-
	-
	-
	-